Functionally Active Synthetic α-Helical Pores

Transmembrane pores are currently at the forefront of nanobiotechnology, nanopore chemistry, and synthetic chemical biology research. Over the past few decades, significant studies in protein engineering have paved the way for redesigning membrane protein pores tailored for specific applications in nanobiotechnology. Most previous efforts predominantly centered on natural β-barrel pores designed with atomic precision for nucleic acid sequencing and sensing of biomacromolecules, including protein fragments. The requirement for a more efficient single-molecule detection system has driven the development of synthetic nanopores. For example, engineering channels to conduct ions and biomolecules selectively could lead to sophisticated nanopore sensors. Also, there has been an increased interest in synthetic pores, which can be fabricated to provide more control in designing architecture and diameter for single-molecule sensing of complex biomacromolecules. There have been impressive advancements in developing synthetic DNA-based pores, although their application in nanopore technology is limited. This has prompted a significant shift toward building synthetic transmembrane α-helical pores, a relatively underexplored field offering novel opportunities. Recently, computational tools have been employed to design and construct α-helical barrels of defined structure and functionality.

We focus on building synthetic α-helical pores using naturally occurring transmembrane motifs of membrane protein pores. Our laboratory has developed synthetic α-helical transmembrane pores based on the natural porin PorACj (Porin A derived from Corynebacterium jeikeium) that function as nanopore sensors for single-molecule sensing of cationic cyclodextrins and polypeptides. Our breakthrough lies in being the first to create a functional and large stable synthetic transmembrane pore composed of short synthetic α-helical peptides. The key highlight of our work is that these pores can be synthesized using easy chemical synthesis, which permits its easy modification to include a variety of functional groups to build charge-selective sophisticated pores. Additionally, we have demonstrated that stable functional pores can be constructed from D-amino acid peptides. The analysis of pores composed of D- and L-amino acids in the presence of protease showed that only the D pores are highly functional and stable. The structural models of these pores revealed distinct surface charge conformation and geometry. These new classes of synthetic α-helical pores are highly original systems of general interest due to their unique architecture, functionality, and potential applications in nanopore technology and chemical biology. We emphasize that these simplified transmembrane pores have the potential to be components of functional nanodevices and therapeutic tools. We also suggest that such designed peptides might be valuable as antimicrobial agents and can be targeted to cancer cells. This article will focus on the evolutions in assembling α-helical transmembrane pores and highlight their advantages, including structural and functional versatility.

Bookmark the permalink.